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Relay Network

Base-Station

User 1

User 2

User K

• Fundamental relay strategies (Cover and El Gamal ’79)

– “Decode-and-forward” and “Quantize-and-forward”

• Both are examples of a “parity-forwarding” strategy.
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Outline of This Talk

• Decode-and-forward as a parity-forwarding strategy.

– Part I: LDPC code design to approach the DF capacity.

• Generalization of decode-and-forward to multi-relay networks.

– Part II: Binning and parity-forwarding for multi-relay networks.

• Is quantize-and-forward ever optimal?

– Part III: Capacity of a class of modulo-sum relay channels.
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Information Flow in a Relay Network
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• Relay nodes summarize its own knowledge using parity bits.

• Design challenges:

– Routing of information in a network.
– Efficient codes to facilitate decoding at the relays/destination.
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Part I: LDPC Code Design for Decode-and-Forward
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Binning in Decode-and-Forward

• Consider Cover and El Gamal’s strategy for degraded relay channel:

X Y

Y1 : X1

• Two elements: Block-Markov coding and Binning

– The relay provides a bin index of the transmitter codeword.

C = supp(x,x1)
min{I(X,X1; Y ), I(X ;Y1|X1)}
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Code Construction

.

n

2nR

2nR0 bins

2nR0

Doubly indexed codebook Xn(w|s)

w ∈ {1, 2, · · · , 2nR}

s ∈ {1, 2, · · · , 2nR0}

2nR is partitioned into 2nR0 bins

Second Codebook Xn
1 (s)
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What is binning?

• Binning is ubiquitous in multiuser information theory

– Writing on dirty paper (Gel’fand-Pinsker)
– Source coding with encoder side information (Wyner-Ziv)
– Relay communication (Cover-El-Gamal)

• Binning is a way of conveying “partial” information.
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What is binning?

• Binning is ubiquitous in multiuser information theory

– Writing on dirty paper (Gel’fand-Pinsker)
– Source coding with encoder side information (Wyner-Ziv)
– Relay communication (Cover-El-Gamal)

• Binning is a way of conveying “partial” information.

Bin index is equivalent to parity-checks
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Bin Index as Parity-Checks

How do we partition a codebook of size 2nR into 2nR0 bins?

... by forming nR0 parity check bits,
and using the parity check bits as bin indices.

Same idea as DISCUS for Slepian-Wolf coding (Pradhan-Ramchandran)

or structured binning (Zamir-Shamai-Erez)
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Decode and Forward

• X1 decodes X and re-encodes parities (or a bin index) of X .

X Y

Y1 : X1
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Decode and Forward

• X1 decodes X and re-encodes parities (or a bin index) of X .

X Y

Y1 : X1

• A good code for the relay channel must be capacity-approaching

– for the X − Y1 link at R;
– for the X − Y link at R − R0 with extra parities!
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Bi-Layer LDPC Code for the Relay Channel

k1

n

(n, k1) must be capacity

approaching for X − Y1

Wei Yu, 2007 13



Bi-Layer LDPC Code for the Relay Channel

k2k1

n

(n, k1) must be capacity

approaching for X − Y1

(n, k1 + k2) is capacity

approaching for X − Y

Bi-Layer LDPC Code
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Code Design Problem for the Relay Channel

Design a single LDPC code so that:

• The entire graph is capacity-achieving at R − R0 with SNRlow.

• The sub-graph is capacity-achieving at R with SNRhigh.

Does such code exist?

Yes. We can design LDPC degree sequence to achieve the above.

A problem of universal codes!
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Irregular Low-Density Parity-Check Codes

(λ2, λ3, · · · )

(ρ2, ρ3, · · · )

• An ensemble of irregular LDPC codes is defined by its variable-degree
distribution {λ2, λ3, . . .} and its check-degree distribution {ρ2, ρ3, . . .}.

• Degree distribution is related to rate by: R = 1 −
∑

i
ρi
i∑

i
λi
i
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Iterative Decoding Algorithm

Channel

Input to the next iteration

Output from the previous iteration

• A message is a belief about the
incident variable node

• Decoder passes messages
between check and variable
nodes iteratively.

• Analysis Tool: Density Evolution (Urbanke-Richardson)

• This talk: Extrinsic Information Transfer (EXIT) charts (ten Brink)
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Tracking Extrinsic Probability of Error
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EXIT chart  for a regular (4, 8) code
EXIT Chart for BSC
with ε = 0.04

• Mutual Inform.
EXIT Chart
(ten Brink ’01)

• Prob. of Error
EXIT Chart
(Gallager ’63,
Ardakani ’04)
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Shaping the EXIT Chart

• For an irregular LDPC code, Pout at the output of variable nodes is
computed using Bayes’s rule.

• Assume a fixed check degree distribution, the resulting Pout is equivalent
to a linear combination of corresponding Pout of regular codes

• Therefore, the EXIT chart of an irregular code is a linear combination of
elementary EXIT charts of regular codes, making Pe-EXIT chart a
powerful design tool.

f(p) =
∑

i λifi(p)
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Linear Programming Approach to LDPC Code Design

• Consider a code design problem for a standard BSC or AWGN channel:

– Fix check degree sequence ρi.

maximize 1 −
∑

ρi/i∑
λi/i

subject to
∑

λifi(p) < p

– Choose variable degree sequence λi to maximize rate, subject to
decodability constraints, by solving a linear programming problem.

• This talk: Generalizing this approach to design bi-layer codes.
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Bi-Layer Density Evolution

k1 k2

+ + ++ +

n

f r
i,j(pl, pr)f r

i,j(pl, Pr)

i

j

Keep track of the probability of error in left and right graphs (pl, pr).
Define left and right elementary EXIT charts f l

i,j(pl, pr) and fr
i,j(pl, pr).
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Designing Bi-Layer LDPC Codes for the Relay Channel

maximize 1 −
∑

i ρi/i∑
i νi/i

subject to νi =
1
η

∑

j

i

i + j
λi,j

∑

i

νif
s
i (p) < p

∑

i,j

λi,j

f l
i,j(pl, pr)i + fr

i,j(pl, pr)j
i + j

< ηpl + (1 − η)pr

Practical design: Fix one layer, optimize the second layer.
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Performance

Example: Optimal λi,j (left degree i and right degree j) for a relay
channel with Rsource−relay = 0.7520 and Rsource−destination = 0.6280.

(i, j) j = 0 j = 1 j = 2 j = 3
i = 2 0.1153 0.0623 0 0
i = 3 0.1220 0.0921 0 0
i = 5 0 0.1897 0 0
i = 8 0 0 0.0591 0
i = 9 0 0 0.0166 0
i = 20 0 0 0.3296 0.0132

Gap to capacity: 0.19dB for source-relay, 0.34dB for source-destination.
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Fig. 11. Empirical bit error probability curves for the designed codes. Solid straight lines represent Shannon limits for each code, and dashed lines represent
the convergence threshold computed by density evolution.



How Hard is Binning?

• Implementing binning:

– Binning for quantization is hard. (e.g. Gel’fand-Pinsker, Wyner-Ziv)
– Binning for error-correcting is practical! (e.g. DF in relay channel)

• Main message:

Binning for Relay Channel = Parity Forwarding

• The coding problem ⇒ Designing a universal code.
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Part II: Parity-Forwarding for Multi-Relay Networks
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Parity Forwarding for One-Relay Network

X

Y1 : X1

Y

si

wi

wi

Key equations for Cover-El-Gamal strategy:

R < I(X ;Y1|X1) decodability at the relay

R0 < I(X1;Y ) parity-forwarding from relay to destination

R − R0 < I(X ;Y |X1) final decoding at the destination

“Degraded” means that relay is able to decode the source message.
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Two-Relay Network

X(wi|s1i , s2i )

Y1 : X1 Y2 : X2

Y

wi

wi

wi s1i

s1i

s2i

• What does degradedness mean for multi-relay networks?

– Both relays are capable of decoding the source message. – Proof via
regular encoding. (Xie-Kumar’05, Kramer-Gastpar-Gupta’05)

C = max
p(x,x1,x2)

min{I(X ;Y1|X1, X2), I(X,X1; Y2|X2), I(X,X1,X2, ; Y )}

– We call the above serially degraded relay channel.
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Another Case: Doubly Degraded Two-Relay Network

X(wi|s1i , s2i )

Y1 : X1 Y2 : X2

Ywi

wi s1i

s1i

s2i

• Suppose that the link from source to the second relay is weak:

– We do not require the second relay to decode the source message.
– But, we use the second relay to help the first relay transmit the

help-message to the destination.

• We call this a doubly degraded relay network.
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Doubly Degraded Two-Relay Network

X(wi|s1i , s2i )

Y1 : X1 Y2 : X2

Ywi

wi s1i

s1i

s2i

• Four-step block-Markov coding:

– Source transmits wi to both Y1 and Y .
– First relay decodes wi and transmits s1

i (parities of wi−1) to Y2, Y .
– Second relay decodes s1

i and transmits s2
i (parities of s1

i−1) to Y .
– Destination decodes s2

i first, then s1
i−1, finally wi−2.
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Doubly Degraded Two-Relay Network
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• Four-step block-Markov coding:

– Source transmits wi to both Y1 and Y .
– First relay decodes wi and transmits s1
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Doubly Degraded Two-Relay Network
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Doubly Degraded Two-Relay Network

X(wi|s1i , s2i )
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• Four-step block-Markov coding:

– Source transmits wi to both Y1 and Y .
– First relay decodes wi and transmits s1

i (parities of wi−1) to Y2, Y .
– Second relay decodes s1

i and transmits s2
i (parities of s1

i−1) to Y .
– Destination decodes s2

i first, then s1
i−1, finally wi−2.
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Capacity for Doubly Degraded Two-Relay Network

Definition 1. A doubly degraded two-relay network is defined by
p(y, y1, y2|x, x1, x2), where X − (X1, X2, Y1) − (Y2, Y ),
X1 − (X2, Y2) − Y and X − (X1, X2, Y ) − Y2 form Markov chains.

Theorem 1. The following rate maximized over p(x, x1, x2) is achievable

R < I(X ;Y1|X1,X2).

R < I(X ;Y |X1, X2) + I(X1; Y2|X2)

R < I(X ;Y |X1, X2) + I(X1; Y |X2) + I(X2; Y )

= I(X,X1,X2;Y ).

It is also the capacity if the two-relay network is doubly degraded.
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Coding for Doubly Degraded Relay Network

X(wi|s1i , s2i )

Y1 : X1 Y2 : X2

Ywi

wi s1i

s1i

s2i

Cascade of bi-layer codes!
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Coding for Doubly Degraded Relay Network
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Coding for Doubly Degraded Relay Network

X(wi|s1i , s2i )

Y1 : X1 Y2 : X2

Ywi

wi s1i
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Cascade of bi-layer codes!
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Another Case: Tri-Layer LDPC Codes

X(wi|s1i , s2i )
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Embedded tri-layer code!
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Another Case: Tri-Layer LDPC Codes
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Another Case: Tri-Layer LDPC Codes

X(wi|s1i , s2i )
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Embedded tri-layer code!
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General Relay Networks
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• The order at which different nodes help each other can be visualized:

– Node X1 helps Node Y3 to decode wi by sending s1
i .

– Node X2 helps Node Y3 to decode s1
i by sending s2

i .
– Node X3 helps the destination in decoding both s2

i and wi.

• This is like a routing protocol. Coding problem: universal codes!
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Connections with Fountain Codes and Network Coding

• Parity-generation achieves universal coding in an erasure network.

• Parity-formation achieves maximum single-source multicast throughput
in network coding.

• Parity-forwarding achieves decode-and-forward rate in relay networks!
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Part III: Quantize-and-Forward for a Modulo-Sum Relay Channel
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Binning in Quantize-and-Forward

• In QF, neither the relay nor the destination can decode source message:

X Y

Y1 : X1

– The relay summarizes its observation in U . Send a bin index of U .
– The destination decodes U using Y as side information.
– The destination then decodes X with the help of U .

C = supp(x)p(x1)p(u|y1,x2)
I(X ;Y U |X1), s.t. I(X1;Y ) ≥ I(Y1; U |X1, Y )
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Is QF Ever Optimal?

• Cut-set upper bound

X Y

Y1 : X1
BC MAC

I(X ;Y, Y1|X1) I(X,X1; Y )

C ≤ max
p(x,x1)

min{I(X ;Y, Y1|X2), I(X,X1; Y )}.
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Is Cut-Set Bound Ever Tight for QF?

• Yes! QF achieves the cut-set bound in the deterministic channels
studied by Cover and Kim ’07. A simple example:

X Y

Z ∼ Ber(p) Y1 : X1
R0

– Quantize Z at rate R0 minimizing Hamming distortion.
– Destination adds quantized Z to channel.

• This talk: What if the Relay observes a noisy Z?

– QF still optimal, now at capacities strictly below the cut-set bound.
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A Binary Relay Channel

X Y

Z ∼ Ber(p)

V ∼ Ber(δ) N ∼ Ber(ε)

Y1 : X1 S0

• Relay observes a corrupted version of the noise.

– DF is useless.
– Forward Y1 uncoded?
– QF? ... but maximizing H(X) limits the side information.
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A Binary Relay Channel: Capacity

X Y

Z ∼ Ber(p)

V ∼ Ber(δ) N ∼ Ber(ε)

Y1 : X1 S0

Theorem 2. The capacity of the above channel is:

C = max
p(u|y1):I(U ;Y1)≤R0

1 − H(Z|U)

where max is over U ’s with |U| ≤ |Y1| + 2, and R0 = max
p(x1)

I(X1; S0).
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Capacity: Achievability

Follows from the QF strategy of Cover and El Gamal:

• Codebook Generation:

– Set p(x) = Ber(1
2).

– Fix p(u|y1) such that I(U ;Y1) ≤ R0.
– Generate conventional rate-distortion codebook U at Y1.

• Encoding:

– Block-Markov coding
– Relay quantizes Y n

1 with Un, and sends quantization index.

• Achievable rate: R < I(X ;Y U) = I(X ;Y |U) = 1 − H(Z|U)
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Capacity: Converse

Starting with Fano’s inequality:

nR = H(W ) = I(W ;Y n, Sn
0 ) + H(W |Y n, Sn

0 )

≤ I(W ;Y n, Sn
0 ) + nεn

≤ I(Xn; Y n, Sn
0 ) + nεn

= I(Xn; Y n|Sn
0 ) + nεn

= H(Y n|Sn
0 ) − H(Y n|Sn

0 , Xn) + nεn

≤ n − H(Zn|Sn
0 , Xn) + nεn

= n − H(Zn|Sn
0 ) + nεn

How to proceed? Need to modify a result from rate distortion.
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Wyner’s Lemma

Z ∼ Ber(p)

V ∼ Ber(δ) N ∼ Ber(ε)

Y1 : X1 S0

Lemma 1. The following holds for any encoding scheme at the relay

H(Zn|Sn
0 ) ≥ min

p(u|y1):I(U ;Y1)≤R0

nH(Z|U)

.

Proof: Expand H(Zn|Sn
0 ) ≥ ∑n

i=1 H(Zi|Sn
0 , Y i−1

1 ). Let Ui = (Sn
0 , Y i−1

1 ).
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Back to the Converse

nR = H(W ) = I(W ;Y n, Sn
0 ) + H(W |Y n, Sn

0 )

≤ I(W ;Y n, Sn
0 ) + nεn

≤ I(Xn;Y n, Sn
0 ) + nεn

= I(Xn;Y n|Sn
0 ) + nεn

= H(Y n|Sn
0 ) − H(Y n|Sn

0 , Xn) + nεn

≤ n − H(Zn|Sn
0 ,Xn) + nεn

= n − H(Zn|Sn
0 ) + nεn

≤ max
p(u|y1):I(U ;Y1)≤R0

n(1 − H(Z|U)) + nεn
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Computing the Capacity

X Y

Z ∼ Ber(1
2)

V ∼ Ber(δ) N ∼ Ber(ε)

Y1 : X1 S0

• Need to evaluate

C = max
p(u|y1):I(U ;Y1)≤R0

1 − H(Z|U).

• In general hard to do, but possible for a special case: Z ∼ Ber(1
2).
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Computing the Capacity

X Y

Z ∼ Ber(1
2)

V ∼ Ber(δ) N ∼ Ber(ε)

Y1 : X1 S0

• When Z ∼ Ber(1
2), Z = V + Y1 with V , Y1 independent.

– Rewrite constraint I(U ;Y1) ≤ R0 as H(Y1|U) ≥ 1 − R0.
– Now the goal is to

min
p(u|y1):H(Y1|U)≥1−R0

H(Z|U)
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Entropy Power Inequality for Binary Random Variable

Lemma 2. [Wyner and Ziv] Suppose Z = Y1 + V , and V ∼ Ber(δ). If

H(Y1|U) ≥ α,

then
H(Z|U) ≥ h(h−1(α) ∗ δ),

with equality iff Y1 given U is a Ber(h−1(α)) random variable.

• But this is achievable with standard binary quantization:

– Let U quantize Y1 at rate R0 minimizing Hamming distance D.
– H(Y1|U) is Ber(D) and H(D) = H(Y1) − R0 = 1 − R0.

C = 1 − h(h−1(1 − R0) ∗ δ)
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Capacity is Below Cut-Set Bound

X Y

Z ∼ Ber(1
2)

V ∼ Ber(δ) N ∼ Ber(ε)

Y1 : X1 S0

• MAC Cut: Direct channel has zero capacity.

– CMAC = max
p(x1)

I(X1;S0) = R0.

• BC Cut: Receiver adds Y1 = Z + V and Y = X + Z together.

– CBC = 1 − h(δ).
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Quantize and Add

X Y

Z ∼ Ber(1
2)

V ∼ Ber(δ) N ∼ Ber(ε)

Y1 : X1 S0

C = 1 − h(h−1(1 − R0) ∗ δ)

• No Wyner-Ziv and only addition at the receiver.

– Relay quantizes Y1 with U . Sends U to receiver.
– Receiver does: Y = X + Z + U = X + Y1 + V + U = X + Z ′ + V .
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Connection with Channels with Side Information

X Y

Y n
1 = Zn + V n, V ∼ Ber(ε)

Z ∼ Ber(1
2)

V ∼ Ber(μ) N ∼ Ber(ν)

RELAY

S1 S2

X1 X2

Let R1 = max
p(x1)

I(X1; S1) and R2 = max
p(x2)

I(X1;S2).

Theorem 3. C = 1 − h(h−1(1 − R1 − R2)) ∗ δ)
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Conclusions and Summary

• Both decode-and-forward and quantize-and-forward can be interpreted
as parity-forwarding strategies.

• Parity-forwarding can be efficiently implemented using LDPC codes.

• Multi-relay networks can be degraded in more than one way;
parity-forwarding is capacity-achieving in degraded networks.

• Quantize-and-forward can be optimal if relay only observes noise.

• Cut-set bound is not tight in general.
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